
CHAPTER 6 
TORSION 

I 
In this chapter, we treat the problem of torsion of prismatic bars with noncir- 

cular cross sections. We treat both linearly elastic and fully plastic torsion. For prismatic 
bars with circular cross sections, the torsion formulas are readily derived by the method of 
mechanics of materials. However, for noncircular cross sections, more general methods 
are required. In the following sections, we treat noncircular cross sections by several 
methods, one of which is the semiinverse method of Saint-Venant (Boresi and Chong, 
2000). General relations are derived that are applicable for both the linear elastic torsion 
problem and the fully plastic torsion problem. To aid in the solution of the resulting differ- 
ential equation for some linear elastic torsion problems, the Saint-Venant solution is used 
in conjunction with the Prandtl elastic-membrane (soap-film) analogy. 

The semiinverse method of Saint-Venant is comparable to the mechanics of materi- 
als method in that certain assumptions, based on an understanding of the mechanics of the 
problem, are introduced initially. Sufficient freedom is allowed so that the equations 
describing the torsion boundary value problem of solids may be employed to determine 
the solution more completely. For the case of circular cross sections, the method of Saint- 
Venant leads to an exact solution (subject to appropriate boundary conditions) for the tor- 
sion problem. Because of its importance in engineering, the torsion problem of circular 
cross sections is discussed first. 

6.1 
CROSS SECTION 

TORSION OF A PRISMATIC BAR OF CIRCULAR 

Consider a solid cylinder with cross-sectional area A and length L. Let the cylinder be sub- 
jected to a twisting couple T applied at the right end (Figure 6.1). An equilibrating torque 
acts on the left end. The vectors that represent the torque are directed along the z axis, the 
centroidal axis of the shaft. Under the action of the torque, an originally straight generator 
of the cylinder AB will deform into a helical curve AB*. However, because of the radial 
symmetry of the circular cross section and because a deformed cross section must appear 
to be the same from both ends of the torsion member, plane cross sections of the torsion 
member normal to the z axis remain plane after deformation and all radii remain straight. 
Furthermore, for small displacements, each radius remains inextensible. In other words, 
the torque T causes each cross section to rotate as a rigid body about the z axis (axis of the 
couple); this axis is called the axis oftwist. The rotation p of a given section, relative to the 
plane z = 0, will depend on its distance from the plane z = 0. For small deformations, 
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Undeformed position 
of generator 

.L’I 

FIGURE 6.1 Circular cross section torsion member. 

following Saint-Venant, we assume that the amount of rotation of a given section depends 
linearly on its distance z from the plane z = 0. Thus, 

p = 8z (6.1) 

where 8 is the angle of twist per unit length of the shaft. Under the conditions that plane 
sections remain plane and Eq. 6.1 holds, we now seek to satisfy the equations of elasticity; 
that is, we employ the semiinverse method of seeking the elasticity solution. 

Since cross sections remain plane and rotate as rigid bodies about the z axis, the dis- 
placement component w, parallel to the z axis, is zero. To calculate the (x,  y) components 
of displacements u and v, consider a cross section at distance z from the plane z = 0. Con- 
sider a point in the circular cross section (Figure 6.2) with radial distance OP. Under the 
deformation, radius OP rotates into the radius OP* (OP* = OP). In terms of the angular dis- 
placement p of the radius, the displacement components (u, v) are 

u = x * - x  = oP[cos(p+Cp)-cosCp] 

v = y * - y  = OP[sin(P+Cp)-sinCp] 

Expanding cos(p + Cp) and sin@ + Cp) and noting that x = OP cos Cp and y = OP sin Cp, we 
may write Eqs. 6.2 in the form 

u = x(cosp- 1 )  -ysinp 
v = xsinp+y(cOsp-l)  

FIGURE 6.2 Angular displacement p. 
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Restricting the displacement to be small (since then sin p = p and cos p = l), we obtain 
with the assumption that w = 0, 

24 = -yp,  v = x p ,  w = 0 (6.4) 

to first-degree terms in p. Substitution of Eq. 6.1 into Eqs. 6.4 yields 

u = -6yz , v = e x z ,  w = o  (6.5) 

On the basis of the foregoing assumptions, Eqs. 6.5 represent the displacement compo- 
nents of a point in a circular shaft subjected to a torque T. 

Substitution of Eqs. 6.5 into Eqs. 2.81 yields the strain components (if we ignore 
temperature effects) 

(6.6) 

Since the strain components are derived from admissible displacement components, com- 
patibility is automatically satisfied. (See Section 2.8; see also Boresi and Chong, 2000, 
Section 2.16.) With Eqs. 6.6, Eqs. 3.32 yield the stress components for linear elasticity 

E ,  - - eyy - - E,, = E = 0,  2~, ,  = y,, = -6y, 2eZy = y,, = OX X Y  

oZy = OGx (6.7) oXx = oYy - - oZz = oXy = 0, oZx = -6Gy, 

Equations 6.7 satisfy the equations of equilibrium, provided the body forces are zero (Eqs. 2.45). 
To satisfy the boundary conditions, Eqs. 6.7 must yield no forces on the lateral sur- 

face of the bar; on the ends, they must yield stresses such that the net moment is equal to T 
and the resultant force vanishes. Since the direction cosines of the unit normal to the lat- 
eral surface are (1, m, 0) (see Figure 6.3), the first two of Eqs. 2.10 are satisfied identically. 
The last of Eqs. 2.10 yields 

lo,, + muzy = 0 (6.8) 

By Figure 6.3, 

(6.9) X I = C O S ~  = m = sin#= 2 b’ b 

Substitution of Eqs. 6.7 and 6.9 into Eqs. 6.8 yields 

-xr+xr = 0 
b b  

Therefore, the boundary conditions on the lateral surface are satisfied. 

FIGURE 6.3 Unit normal vector. 



6.1 TORSION OF A PRISMATIC BAR OF CIRCULAR CROSS SECTION 203 

On the ends, the stresses must be distributed so that the net moment is T. Therefore, 
summation of moments on each end with respect to the z axis yields (Figure 6.4) 

x M Z  = T = ( x o z y - y ~ z , ) d A  I 
A 

Substitution of Eqs. 6.7 into Eq. 6.10 yields 

T = G8j (x2+y2)dA = G81r2dA 
A A 

(6.10) 

(6.1 1) 

Since the last integral is the polar moment of inertia (J = zb4/2) of the circular cross sec- 
tion, Eq. 6.1 1 yields 

T 8 = -  
GJ 

(6.12) 

which relates the angular twist 8 per unit length of the shaft to the magnitude T of the applied 
torque. The factor GJ is the torsional rigidity (or torsional stiffness) of the member. 

Because compatibility and equilibrium are satisfied, Eqs. 6.7 represent the solution 
of the elasticity problem. However, in applying torsional loads to most torsion members of 
circular cross section, the distributions of o,, and oZy on the member ends probably do not 
satisfy Eqs. 6.7. In these cases, it is assumed that o,, and oZy undergo a redistribution with 
distance from the ends of the bar until, at a distance of a few bar diameters from the ends, 
the distributions are essentially given by Eqs. 6.7. This concept of redistribution of the 
applied end stresses with distance from the ends is known as the Saint-Venant principle 
(Boresi and Chong, 2000). 

Since the solution of Eqs. 6.7 indicates that o,, and oZy are independent of z, the 
stress distribution is the same for all cross sections. Thus, the stress vector T for any point 
P in a cross section is given by the relation 

T = - BGyi + 8Gxj (6.13) 

The stress vector T lies in the plane of the cross section, and it is perpendicular to the 
radius vector r joining point P to the origin 0. By Eq. 6.13, the magnitude of T is 

z = O G t , / m  = 8Gr (6.14) 

Hence, z is a maximum for r = b; that is, z attains a maximum value of 8Gb. 

FIGURE 6.4 Shear stresses (o,,, oJ. 
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Substitution of Eq. 6.12 into Eq. 6.14 yields the result 

z =  Tr - (6.15) 
J 

which relates the magnitude z of the shear stress to the magnitude T of the torque. This result 
holds also for cylindrical bars with hollow circular cross sections (Figure 6.5), with inner 
radius a and outer radius b; for this cross section J = n(b4 - a4)/2 and a I r I b. 

6.1.1 Design of Transmission Shafts 

Torsional shafts are used frequently to transmit power from a power plant to a machine; an applica- 
tion is noted in Figure 6.6, where an electric motor is used to drive a centrifugal pump. By dynam- 
ics, the power P, measured in watts @ d s ] ,  transmitted by a shaft is defined by the relation 

P = T o  (a) 

where T is the torque applied to the shaft and w is the angular velocity [rad/s] of the rotating 
shaft. The frequency [Hz] of rotation of the shaft is denoted by$ Thus, 

w = 2n-f (b) 

Equations (a) and (b) yield 

If the power P and frequencyf are specified, Eq. (c) determines the design torque for the shaft. 
The dimensions of the shaft are dictated by the mode of failure, the strength of the material asso- 
ciated with the mode of failure, the required factor of safety, and the shaft cross section shape. 

0 

FIGURE 6.5 Hollow circular cross section. 

Electric motor .. . , 

&.- Circular shaft 

FIGURE 6.6 Transmission of power through a circular shaft. 
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EXAMPLE 6.1 
Shaft with 

Hollow Circular 
Cross Section 

Solution 

EXAMPLE 6.2 
Circular Cross 
Section Drive 

Shaft 

Solution 

A steel shaft has a hollow circular cross section (see Figure 6.5), with radii a = 22 mm and b = 
25 mm. It is subjected to a twisting moment T = 500 N m. 

(a) Determine the maximum shear stress in the shaft. 

(b) Determine the angle of twist per unit length. 

(a) The polar moment of inertia of the cross section is 

J = z(b4 - a4)/2 = ~ ( 2 5 ~  - Z4)/2 = 245,600 mm4 = 24.56 x m4 

Hence, by Eq. 6.15, 

z,,, = Tb/J = 500 x 0.025/24.56 x = 50.9 MPa 

(b) By Eq. 6.12, with G = 77 GPa, 

8 = T/GJ = 500477 x lo9 x 24.56 x lo-') = 0.0264 rad/m 

Two pulleys, one at B and one at C, are driven by a motor through a stepped drive shaft ABC, 
as shown in Figure E6.2. Each pulley absorbs a torque of 113 N m. The stepped shaft has two 
lengths AB = L ,  = 1 m and BC = L2 = 1.27 m. The shafts are made of steel (Y = 414 MPa, 
G = 77 GPa). Let the safety factor be SF = 2.0 for yield by the maximum shear-stress criterion. 

(a) Determine suitable diameter dimensions d, and d2 for the two shaft lengths. 

(b) With the diameters selected in part (a), calculate the angle of twist p, of the shaft at C. 

Pulley 
A B 

dl 

Pulley 
C 

FIGURE E0.2 Circular cross section shaft. 

Since each pulley removes 1 13 N m, shaft AB must transmit a torque T ,  = 226 N m, and shaft BC 
must transmit a torque T2 = 113 N m. Also, the maximum permissible shear stress in either shaft 
length is (by Eq. 4.12) z,,, = z,/SF = 0.25Y = 103.5 m a .  

(a) By Eq. 6.15, we have z,,, = 2T/ ( zr,) . Consequently, we have 3 

rl = [2T/(zzmax)]'/3 = [2 x 226/(1c x 103.5 x lO6)I1i3 = 0.0112 m 

Hence, the diameter d, = 2rl = 0.0224 m = 22.4 mm. Similarly, we find d2 = 2r2 = 2 X 0.00886 m = 
0.0177 m = 17.7 mm. Since these dimensions are not standard sizes, we choose d, = 25.4 rnm and 
d2 = 19.05 mm, since these sizes (1.0 and 0.75 in., respectively) are available in U.S. customary units. 

(b) By Eq. 6.12, the unit angle of twist in the shaft 1engthAB is 

8 ,  = T,/(GJI) = 2T,/(Gnr;) = (2 x 226)/(77 x lo9 x 7c ~ 0 . 0 1 2 7 ~ )  = 0.07183 rad/m 

Similarly, we obtain 8, = 0.1135 rad/m. Therefore, the angle of twist at C is 

0, = 1.0 x 0.07183 + 1.27 x 0.1 135 = 0.216 rad = 12.4". 
* 
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EXAMPLE 6.3 
Design Torqus 

for a Hollow 
Torsion Shah 

Solution 

The torsion member shown in Figure E6.3 is made of an aluminum alloy that has a shear yield 
strength zy = 190 Mpa and a shear modulus G = 27.0 GPa. The length of the member is L = 2.0 m. 
The outer diameter of the shaft is Do = 60.0 mm and the inner diameter is Di = 40.0 mm. Two design 
criteria are specified for the shaft. First, the factor of safety against general yielding must be at least 
SF = 2.0. Second, the angle of twist must not exceed 0.20 rad. Determine the maximum allowable 
design torque T for the shaft. 

FIGURE E0.3 

(a) Consider first the case of general yielding. P general yielding, the maximum shear stress in the 
shaft must be equal to the shear yield strength zy = 190 MPa. Hence, by Eq. 6.15, the design torque 
T is 

TYJ (SF)T = - 
D0/2 

or 

(190 x 106)J T =  
(0.060) 

By Figure E6.3, 

or 

-6 4 J = 1 . 0 2 1 ~  10 m 

Hence, 

T = 3.233 kN m 

(b) For a limiting angle of twist of y = 8L = 0.20 rad, the design torque is obtained by Eq. 6.12 as 

(27 x 109)(1.021 x 10-~)(0.20) T = GJ8 = 
2.0 

or 

T = 2.757 kN m 

Thus, the required design torque is limited by the angle of twist and is T = 2.757 kN m. 
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EXAMPLE 6.4 
Solid Shaft with 

Abrupt Change in 
Cross Section 

Solution 

The torsion member shown in Figure E6.h  is made of steel (G = 77.5 GPa) and is subjected to tor- 
sional loads as shown. Neglect the effect of stress concentrations at the abrupt change in cross section 
at section B and assume that the material remains elastic. 

(a) Determine the maximum shear stress in the member. 

(b) Determine the angle of twist ty of sections A, B, and C, relative to the left end 0 of the member. 

1.5 kN - m 
J 

12.5 kN * m 4kN.m 10 kN - m 

C 
z 

N 

(0 )  

12.5 kN - m 

f T - I  
0 

(b)  

12.5 kN * m 4 k N - m  
f 

(C) 

12.5 kN - m 4kN.m 10 kN * m 

(4 

FIGURE E6.4 

(a) Note that the member is in torsional equilibrium and that the twisting moment is constant in the 
segments OA, AB, and BC of the member. The moments in segments UA, AB, and BC are obtained by 
moment equilibrium with the free-body diagrams shown in Figures E 6 . 4 ,  c, and d. Thus, 

To, = -12.5 kN m 

TAB = -8.5 kN m 

T,,  = 1 . 5 k N - m  

Since the magnitude of TOA is larger than that of TAB, the maximum shear stress in the segment 
OAB occurs in segment OA. Hence, the maximum shear stress in the member occurs either in segment 
OA or segment BC. In segment OA, by Eq. 6.15, 

In length BC, by Eq. 6.15, 



208 CHAPTER6 TORSION 

EXAMPLE 6.5 
Sha &-Speed 

Reducer System 

Solution 

Hence, the maximum shear stress in the member is z = 63.66 MPa in segment OA. 

(b) The angle of twist is given by Eq. 6.12 as 

where the positive direction of rotation is shown in Figure E6.k. For section A, Eq. (a) yields 

ToALOA yA = - = -0.00821 rad 
GJOA 

The negative sign for yA indicates that section A rotates clockwise relative to section 0. 
For section B,  the angle of twist is 

WB = WA + WBA (C) 

where VlgA is the angle of twist of section B relative to section A. Thus by Eqs. (a)-(c) 

(4 yB I -0.01268 rad 

Similarly, the angle of twist of section C is 

Wc = WB+ WCB (e) 

where tycB is the angle of twist of section C relative to sectionB. Thus by Eqs. (a), (d), and (e) 

yC = -0.00322rad 

In summary, the angle of twist at section A is 0.00821 rad clockwise relative to section 0, and the 
angles of twist at sections B and C are 0.01268 rad and 0.00322 rad, both clockwise relative to section 0. 

A solid shaft is frequently used to transmit power to a speed reducer and then from the speed reducer 
to other machines. For example, assume that an input power of 100 kW at a frequency of 100 Hz is 
transmitted by a solid shaft of diameter Din to a speed reducer. The frequency is reduced to 10 Hz and 
the output power is transferred to a solid shaft of diameterD,,,. Both input and output shafts are made 
of a ductile steel (z, = 220 MPa). A safety factor of SF = 2.5 is specified for the design of each shaft. 
The output power is also 100 kW, since the speed reducer is highly efficient. Determine the diameters 
of the input and output shafts. Assume that fatigue is negligible. 

Since fatigue is not significant, general yielding is the design failure mode. By the relation among 
power, frequency, and torque, the input torque Ti, and the output torque Tout are, respectively, 

P T .  = - = 159.2 N m '* 2?rfi, 

P To, = - = 1592 N m 
2 E f  out 

For a safety factor of 2.5, the diameters Din and Do,, are given by Eqs. 6.15, (a), and (b) as follows: 

zyJout - z ~ k  ( D t ~ t ) / ~ ~  
(SF)Tout = - - 

Rout (Dout/2) 
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Therefore. 
D, = 20.96mm 

DOut = 45.17 mm 

Note that although the two shafts transmit the same power, the high-speed shaft has a much smaller 
diameter. So, if weight is to be kept to a minimum, power should be transmitted at the highest possi- 
ble frequency. Weight can also be reduced by using a hollow shaft. 

6.2 SAINT-VENANT'S SEMIINVERSE METHOD 

The analysis for the torsion of noncircular cross sections proceeds in much the same fashion 
as for circular cross sections. However, in the case of noncircular cross sections, Saint- 
Venant assumed more generally that w is a function of (x, y), the cross-section coordinates. 
Then, the cross section does not remain plane but warps; that is, different points in the cross 
section, in general, undergo different displacements in the z direction. 

Consider a torsion member with a uniform cross section of general shape as shown 
in Figure 6.7. Axes (x, y, z) are taken as for the circular cross section (Figure 6.1). The 
applied shear stress distribution on the ends (ozx, ozr) produces a torque T. In general, any 
number of stress distributions on the end sections may produce a torque T. According to 
Saint-Venant's principle, the stress distribution on sections sufficiently far removed from 
the ends depends principally on the magnitude of T and not on the stress distribution on 
the ends. Thus, for sufficiently long torsion members, the end stress distribution does not 
affect the stress distributions in a large part of the member. 

In Saint-Venant's semiinverse method we start by approximating the displacement 
components resulting from torque T. This approximation is based on observed geometric 
changes in the deformed torsion member. 

6.2.1 Geometry of Deformation 

As with circular cross sections, Saint-Venant assumed that every straight torsion member 
with constant cross section (relative to axis z) has an axis of twist, about which each cross 
section rotates approximately as a rigid body. Let the z axis in Figure 6.7 be the axis of twist. 

For the torsion member in Figure 6.7, let OA and OB be line segments in the cross 
section for z = 0, which coincide with the x and y axes, respectively. After deformation, by 
rigid-body displacements, we may translate the new position of 0, that is, 0*, back to 

Undeformed end section 

P: oi, Y. z) 

FIGURE 6.7 Torsion member. 
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coincide with 0, align the axis of twist along the z axis, and rotate the deformed torsion 
member until the projection of O*A* on the (x, y )  plane coincides with the x axis. Because 
of the displacement (w displacement) of points in each cross section, O*A* does not, in 
general, lie in the (x, y) plane. However, the amount of warping is small for small displace- 
ments; therefore, line OA and curved line O*A* are shown as coinciding in Figure 6.7. 
Experimental evidence indicates also that the distortion of each cross section in the z 
direction is essentially the same. This distortion is known as warping. Furthermore, exper- 
imental evidence indicates that the cross-sectional dimensions of the torsion member are 
not changed significantly by the deformations, particularly for small displacements. In 
other words, deformation in the plane of the cross section is negligible. Hence, the projec- 
tion of O*B* on the (x, y) plane coincides approximately with the y axis, indicating that exy 
(y, = 215~) is approximately zero (see Section 2.7, particularly, Eq. 2.74). 

Consider a point P with coordinates (x, y, z) in the undeformed torsion member (Figure 
6.7). Under deformation, P goes into P*. The point P, in general, is displaced by an amount w 
parallel to the z axis because of the warping of the cross section and by amounts u and v parallel 
to the x and y axes, respectively. The cross section in which P lies rotates through an angle p 
with respect to the cross section at the origin. This rotation is the principal cause of the (u, v) 
displacements of point P. These observations led Saint-Venant to assume that p = &, where 8 is 
the angle of twist per unit length, and therefore that the displacement components take the form 

u = - 4 2  , v =  exz, w =  (6.16) 

where y is the warping function (compare Eqs. 6.16 for the general cross section with Eqs. 6.5 
for the circular cross section). The function y(x, y) may be determined such that the equations 
of elasticity are satisfied. Since we have assumed continuous displacement components (u, v, 
w), the small-displacement compatibility conditions (Eqs. 2.83) are automatically satisfied. 

The state of strain at a point in the torsion member is given by substitution of Eqs. 
6.16 into Eqs. 2.81 to obtain 

- 
E X X  - EYY = E,, = E = 0 

X Y  

(6.17) 

2Ezy = yzy = 8 ( $ + x )  

If the equation for yzx is differentiated with respect to y,  the equation for y, is differentiated 
with respect to x, and the second of these resulting equations is subtracted from the first, the 
warping function y may be eliminated to give the relation 

(6.18) 

If the torsion problem is formulated in terms of ( yZx, yzy), Eq. 6.18 is a geometrical condition 
(compatibility condition) to be satisfied for the torsion problem. 

6.2.2 Stresses at a Point and Equations 
of Equilibrium 

For torsion members made of isotropic materials, stress-strain relations for either elastic (the 
fist of Eqs. 6.17 and Eqs. 3.32) or inelastic conditions indicate that 
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(6.19) 

The stress components (oZx, a?) are nonzero. if body forces and acceleration terms are 
neglected, these stress components may be substituted into Eqs. 2.45 to obtain equations of 
equilibrium for the torsion member: 

oxx = ayy - - o,, = oxy = 0 

(6.20) 

(6.21) 

(6.22) 

Equations 6.20 and 6.21 indicate that o,, = oxz and oq = oyz are independent of z. These 
stress components must satisfy Q. 6.22, which expresses a necessary and sufficient condi- 
tion for the existence of a stress function $(x, y )  (the so-called Pmndtl stress function) such that 

- JCp 
o z x  - -& 
ozy - - -- JCp 

f3X 

(6.23) 

Thus, the torsion problem is transformed into the determination of the stress function Cp. 
Boundary conditions put restrictions on Cp. 

6.2.3 Boundary Conditions 

Because the lateral surface of a torsion member is free of applied stress, the resultant shear 
stress z on the surface S of the cross section must be directed tangent to the surface (Figures 
6 . 8 ~  and b). The two shear stress components ozx and ozr that act on the cross-sectional ele- 
ment with sides dx, dy, and ds may be written in terms of T (Figure 6.8b) in the form 

ozx = zs ina  

ozy = zcosa  

where, according to Figure 6.8u, 

dY c o s a =  - 
ds' ds 

sina = dx - 

(6.24) 

(6.25) 

Since the component of T in the direction of the normal n to the surface S is zero, projections 
of czx and czy in the normal direction (Figure 6.M) yield, with Q. 6.25, 

oZxcosa- o,,sina = 0 
(6.26) 

'This approach was taken by Randtl. See Section 7.3 of Boresi and Chong (2000). 
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/ I R  \ 

X 

(b) 

FIGURE 6.8 Cross section of a torsion member. 

Substituting Eqs. 6.23 into Eq. 6.26, we find 

or 

@ = constant on the boundary S (6.27) 

Since the stresses are given by partial derivatives of @ (see Eqs. 6.23), it is permissible to 
take this constant to be zero; thus, we select 

@ = 0 on the boundary S (6.28) 

The preceding argument can be used to show that the shear stress 

(6.29) 

at any point in the cross section is directed tangent to the contour @ = constant through the point. 

equations: 
The distributions of o,, and ozy on a given cross section must satisfy the following 

C F x  = 0 = j o z x d x d y  = j $ d x d y  

C F y  = 0 = j o z y d x d y  = - j g d x d y  

E M Z  = T = ~ ( X O ~ ~ - ~ O , , )  dxdy 

(6.30) 

(6.31) 

(6.32) 

In satisfying the second equilibrium equation, consider the strip across the cross section of 
thickness dy as indicated in Figure 6 . 8 ~ .  Because the stress function does not vary in the y 
direction for this strip, the partial derivative can be replaced by the total derivative. For the 
strip, Eq. 6.31 becomes 
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(6.33) 

= d Y [ W ) - $ ( A ) I  = 0 

since $ is equal to zero on the boundary. The same is true for every strip so that 
satisfied. In a similar manner, Eq. 6.30 is verified. In Eq. 6.32, consider the term 

Fy = 0 is 

which for the strip in Figure 6 . 8 ~  becomes 

Evaluating the latter integral by parts and noting that $(B) = $(A) = 0, we obtain 

$(B)  
- d y  I xd$ = - d y  

(6.34) 

(6.35) 
$ ( A )  x A  ) x A  

Summing for the other strips and repeating the process using strips of thickness du for the 
other term in Eq. 6.32, we obtain the relation 

T = 2 @ d x d y  (6.36) II 
The stress function $ can be considered to represent a surface over the cross section of the 
torsion member. This surface is in contact with the boundary of the cross section (see 
Eq. 6.28). Hence, Eq. 6.36 indicates that the torque is equal to twice the volume between the 
stress function and the plane of the cross section. 

Note: Equations 6.18, 6.23, 6.28, and 6.36, as well as other equations in this section, 
have been derived for torsion members that have uniform cross sections that do not vary 
with z, that have simply connected cross sections, that are made of isotropic materials, and 
that are loaded so that deformations are small. These equations are used to obtain solutions 
for torsion members; they do not depend on any assumption regarding material behavior 
except that the material is isotropic; therefore, they are valid for any specified material 
response (elastic or inelastic). 

Two types of typical material response are considered in this chapter: linearly elastic 
response and elastic-perfectly plastic response (Figure 4.4~). The linearly elastic response 
leads to the linearly elastic solution of torsion, whereas the elastic-perfectly plastic response 
leads to the fully plastic solution of torsion of a bar for which the entire cross section yields. 
The material properties associated with various material responses are determined by appro- 
priate tests. Usually, as noted in Chapter 4, we assume that the material properties are deter- 
mined by either a tension test or torsion test of a cylinder with thin-wall annular cross section. 

6.3 LINEAR ELASTIC SOLUTION 

Stress-strain relations for linear elastic behavior of an isotropic material are given by 
Hooke's law (see Eqs. 3.32). By Eqs. 3.32 and 6.23, we obtain 
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(6.37) 

Substitution of Eqs. 6.37 into Eq. 6.18 yields 

(6.38) 

If the unit angle of twist 6 is specified for a given torsion member and @ satisfies the boundary 
condition indicated by Eq. 6.28, then Eq. 6.38 uniquely determines the stress function @(x, y ) .  
Once @has been determined, the stresses are given by Eqs. 6.23 and the torque is given by Eq. 
6.36. The elasticity solution of the torsion problem for many practical cross sections requires 
special methods (Boresi and Chong, 2000) for determining the function @ and is beyond the 
scope of this book. As indicated in the following paragraphs, an indirect method may be used 
to obtain solutions for certain types of cross sections, although it is not a general method. 

Let the boundary of the cross section for a given torsion member be specified by the 
relation 

F ( x , y )  = 0 (6.39) 

Furthermore, let the torsion member be subjected to a specified unit angle of twist and define 
the stress function by the relation 

@ = B F ( x , y )  (6.40) 

where B is a constant. This stress function is a solution of the torsion problem, provided 
F(x, y) = 0 on the lateral surface of the bar and 

d2F/dx2 + d 2 F / d y 2  = constant 

Then, the constant B may be determined by substituting Eq. 6.40 into Eq. 6.38. With B deter- 
mined, the stress function @ for the torsion member is uniquely defined by Eq. 6.40. This 
indirect approach may, for example, be used to obtain the solutions for torsion members 
whose cross sections are in the form of a circle, an ellipse, or an equilateral triangle. 

6.3.1 Elliptical Cross Section 

Let the cross section of a torsion member be bounded by an ellipse (Figure 6.9). The stress 
function @ for the elliptical cross section may be written in the form 

(6.41) 

since F(x, y )  = x2/h2 + y 2 / b 2  - 1 = 0 on the boundary (Eq. 6.39). Substituting Eq. 6.41 into 
Eq. 6.38, we obtain 

h2b2GB 

h2 + b2 
B = -- (6.42) 

in terms of the geometrical parameters (h, b), shear modulus G, and unit angle of twist 6. With 
@ determined, the shear stress components for the elliptical cross section are, by Eqs. 6.23, 

\ 
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FIGURE 6.9 Ellipse. 

(6.43) 

(6.44) 

The maximum shear stress T,, occurs at the boundary nearest the centroid of the cross 
section. Its value is 

(6.45) 

The torque T for the elliptical cross section torsion member is obtained by substituting Eq. 
6.41 into Eq. 6.36. Thus, we obtain 

T = 2B - j x  2 dA + 2B T j y  2 dA - 2BjdA = ?!!I + 2 I  - 2BA 
h2 b2 h2 b 

Determination of I,, Iy  and A in terms of (b, h) allows us to write 

T = -nBhb (6.46) 

The torque may be expressed either in terms of T,, or 8 by means of Eqs. 6.42,6.45, and 
6.46. Thus. 

- 2T e =  T(b2  + h2)  
‘max - - 

zbh2’ Gnb3h3 
(6.47) 

where Gnb3h3/(b2 + h2) = GJ is called the torsional rigidity (stiffness) of the section and 
the torsional constant for the cross section is 

J = nb3h3/(b2 + h2) 

6.3.2 Equilateral Triangle Cross Section 

Let the boundary of a torsion member be an equilateral triangle (Figure 6.10). The stress 
function is given by the relation 

- x -  3 y - 2 h ) ( x + f i y - 2 h ) ( x + ; )  4 =  ;;( Af 3 3 
(6.48) 
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FIGURE 6.10 Equilateral triangle. 

Proceeding as for the elliptical cross section, we find 

15&T , 0 = -  - 15&T 
%lax - - 

2h3 Gh4 
(6.49) 

where Gh4/ 15 & = GJ is called the torsional rigidity of the section. Hence, the torsional 
constant for the cross section is 

J =  h4/(15&) 

6.3.3 Other Cross Sections 

There are many torsion members whose cross sections are so complex that exact analytical 
solutions are difficult to obtain. However, approximate solutions may be obtained by 
Prandtl’s membrane analogy (see Section 6.4). An important class of torsion members 
includes those with thin walls. Included in the class of thin-walled torsion members are 
open and box-sections. Approximate solutions for these types of section are obtained in 
Sections 6.5 and 6.7 by means of the Prandtl membrane analogy. 

6.4 THE PRANDTL ELASTIC-MEMBRANE (SOAP-FILM) 
ANALOGY 

In this section, we consider a solution of the torsion problem by means of an analogy proposed 
by Prandtl (1903). The method is based on the similarity of the equilibrium equation for a 
membrane subjected to lateral pressure and the torsion (stress function) equation (Eq. 6.38). 
Although this method is of historical interest, it is rarely used today to obtain quantitative 
results. It is discussed here primarily from a heuristic viewpoint, in that it is useful in the visual- 
ization of the distribution of shear-stress components in the cross section of a torsion member. 

To set the stage for our discussion, consider an opening in the (x, y) plane that has 
the same shape as the cross section of the torsion bar to be investigated. Cover the opening 
with a homogeneous elastic membrane, such as a soap film, and apply pressure to one side 
of the membrane. The pressure causes the membrane to bulge out of the (x, y) plane, form- 
ing a curved surface. If the pressure is small, the slope of the membrane will also be small. 
Then, the lateral displacement z(x, y) of the membrane and the Prandtl torsion stress func- 
tion $(x, y) satisfy the same equation in (x, y). Hence, the displacement z(x, y) of the mem- 
brane is mathematically equivalent to the stress function $(x, y ) ,  provided that z(x, y) and 
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@(x, y )  satisfy the same boundary conditions. This condition requires the boundary shape 
of the membrane to be identical to the boundary shape of the cross section of the torsion 
member. In the following discussion, we outline the physical and mathematical procedures 
that lead to a complete analogy between the membrane problem and the torsion problem. 

As already noted, the Prandtl membrane analogy is based on the equivalence of the 
torsion equation (Eq. 6.38 is repeated here for convenience) 

(6.50) 

and the elastic membrane equation (to be derived in the next paragraph) 

d2z d2z - p 

dx2 dy2 S 
- + + - - -  

where z denotes the lateral displacement of an elastic membrane subjected to a lateral pressure 
p in terms of force per unit area and an initial (large) tension S (Figure 6.1 1) in terms of force 
per unit length. 

For the derivation of the elastic membrane equation, consider an element ABCD of 
dimensions dx, dy of the elastic membrane shown in Figure 6.11. The net vertical force 
resulting from the tension S acting along edge AD of the membrane is (if we assume small 
displacements so that sin a = tan a )  

m -Sdysina=-Sdytana = -Sdy- ax 
and, similarly, the net vertical force resulting from the tension S (assumed to remain constant 
for sufficiently small values of p) acting along edge BC is 

Similarly, for edges AB and DC, we obtain 

view 

FIGURE 6.1 1 Deformation of a pressurized elastic membrane. 
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Consequently, the summation of force in the vertical direction yields for the equilibrium of the 
membrane element du dy 

d2Z d2Z 

dx2 ?Y2 

S - d x d y + S - d x d y + p d x d y  

or 

d2z d2z - p 

dx2 ay2 
- + + - - -  (6.51) 

By comparison of Eqs. 6.50 and 6.5 1, we arrive at the following analogous quantities: 

z = c@, E=c2GO (6.52) 
S 

where c is a constant of proportionality. Hence, 

z - @  f$=- 2G8SZ 
p/s - 2G8’ P 

(6.53) 

Accordingly, the membrane displacement z is proportional to the Prandtl stress function @, and 
since the shear-stress components o,, oq are equal to the appropriate derivatives of @ with 
respect to x and y (see Eqs. 6.23), it follows that the stress components are proportional to the 
derivatives of the membrane displacement z with respect to the (x, y )  coordinates (Figure 6.1 1). 
In other words, the stress components at a point (x, y )  of the bar are proportional to the slopes 
of the membrane at the corresponding point (x, y )  of the membrane. Consequently, the distribu- 
tion of shear-stress components in the cross section of the bar is easily visualized by forming a 
mental image of the slope of the corresponding membrane. Furthermore, for simply connected 
cross sections? since z is proportional to @. by Eqs. 6.36 and 6.53, we note that the twisting 
moment T is proportional to the volume enclosed by the membrane and the (x, y )  plane (Figure 
6.1 1). For multiply connected cross section, additional conditions arise (Section 6.6; see also 
Boresi and Chong, 2000). 

An important aspect of the elastic membrane analogy is that valuable deductions can 
be made by merely visualizing the shape that the membrane must take. For example, if a 
membrane covers holes machined in a flat plate, the corresponding torsion members have 
equal values of GO; therefore, the stiffnesses (see Eqs. 6.47 and 6.49) of torsion members 
made of materials having the same G are proportional to the volumes between the mem- 
branes and flat plate. For cross sections with equal area, one can deduce that a long narrow 
rectangular section has the least stiffness and a circular section has the greatest stiffness. 

Important conclusions may also be drawn with regard to the magnitude of the shear 
stress and hence to the cross section for minimum shear stress. Consider the angle section 
shown in Figure 6.12~2. At the external comers A, B ,  C,  E, and F, the membrane has zero 
slope and the shear stress is zero; therefore, external comers do not constitute a design 
problem. However, at the reentrant comer at D (shown as a right angle in Figure 6.12a), 
the corresponding membrane would have an infinite slope, which indicates an infinite 

*A region R is simply connected if every closed curve within it or on its boundary encloses only points in R. For 
example, the solid cross section in Figure 6 . 8 ~  (region R )  is simply connected (as are all the cross sections in 
Section 6.3), since any closed curve in R or on its boundary contains only points in R .  However, a region R 
between two concentric circles is not simply connected (see Figure 6.5), since its inner boundary r = a encloses 
points not in R. A region or cross section that is not simply connected is called multiply cmnected. 
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(a)  (b)  (C) 

FIGURE 6.12 Angle sections of a torsion member. (a) Poor. (b) Better. (c) Best. 

shear stress in the torsion member. In practical problems, the magnitude of the shear stress 
at D would be finite but very large compared to that at other points in the cross section. 

6.4.1 Remark on Reentrant Corners 

If a torsion member with cross section shown in Figure 6 .12~ is made of a ductile material 
and it is subjected to static loads, the material in the neighborhood of D yields and the load 
is redistributed to adjacent material, so that the stress concentration at point D is not par- 
ticularly important. If, however, the material is brittle or the torsion member is subjected 
to fatigue loading, the shear stress at D limits the load-carrying capacity of the member. In 
such a case, the maximum shear stress in the torsion member may be reduced by removing 
some material as shown in Figure 6.12b. Preferably, the member should be redesigned to 
alter the cross section (Figure 6.12~). The maximum shear stress would then be about the 
same for the two cross sections shown in Figures 6.12b and 6.12~ for a given unit angle of 
twist; however, a torsion member with the cross section shown in Figure 6.12~ would be 
stiffer for a given unit angle of twist. 

6.5 NARROW RECTANGULAR CROSS SECTION 

The cross sections of many members of machines and structures are made up of narrow 
rectangular parts. These members are used mainly to carry tension, compression, and 
bending loads. However, they may be required also to carry secondary torsional loads. For 
simplicity, we use the elastic membrane analogy to obtain the solution of a torsion mem- 
ber whose cross section is in the shape of a narrow rectangle. 

Consider a bar subjected to torsion. Let the cross section of the bar be a solid rectan- 
gle with width 2h and depth 2b, where b >> h (Figure 6.13). The associated membrane is 
shown in Figure 6.14. 

Except for the region near x = +b, the membrane deflection is approximately inde- 
pendent of x. Hence, if we assume that the membrane deflection is independent of x and 
parabolic with respect to y, the displacement equation of the membrane is 

z = 1 -($I (6.54) 

where zo is the maximum deflection of the membrane. Note that Eq. 6.54 satisfies the con- 
dition z = 0 on the boundaries y = +h. Also, if p / S  is a constant in Eq. 6.51, the parameter 
zo  may be selected so that Eq. 6.54 represents a solution of Eq. 6.51. Consequently, Eq. 
6.54 is an approximate solution of the membrane displacement. By Eq. 6.54 we find 
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FIGURE 6.13 Narrow rectangular torsion member. 

Y 

FIGURE 6.14 Membrane for narrow rectangular cross section. 

d2z d2z 220 - - +- = -  
dx2 dy2 h2 

(6.55) 

By Eqs. 6.55,6.51, and 6.52, we may write -2z01h2 = -2cG8 and Eq. 6.54 becomes 

4 = G0h2[1 - ($1 
Consequently, Eqs. 6.23 yield 

and we note that the maximum value of o,, is 

zmax = 2G0h, fory = +h 

Equations 6.36 and 6.56 yield 

1 T = 2 1  1 $ dx dy = -G0(2b) (2h)3  = G J 8  
3 

b h  

(6.56) 

(6.57) 

(6.58) 

(6.59) 
-b-h 

where 

is the torsional constant and GJ is the torsional rigidity. Note that the torsional constant J is 
small compared to the polar moment of inertia Jo = [ ( 2 b ) ~ h ) ~  + (2h)(2b)3]/12; see Table B.l .  
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In summary, we note that the solution is approximate and, in particular, the bound- 
ary condition for x = -+b is not satisfied. From Eqs. 6.58 and 6.59 we obtain 

(6.61) 

6.5.1 Cross Sections Made Up of Long Narrow 
Rectangles 

Many rolled composite sections are made up of joined long narrow rectangles. For these 
cross sections, it is convenient to define the torsional constant J by the relation 

n 

(6.62) 

where C is a correction coefficient. If bi > 10hi for each rectangular part of the composite 
cross section (see Table 6.1 in Section 6.6), then C = 1 .  For many rolled sections, bi may 
be less than lOhi for one or more of the rectangles making up the cross section. In this 
case, it is recommended that C = 0.91. When n = 1 and b > 10h, C = 1 and Eq. 6.62 is iden- 
tical to Eq. 6.60. For n > 1 ,  Eqs. 6.61 take the form 

(6.63) 

EXAMPLE 6.6 
Torsion of a 

Member with 
Narrow 

Semicircular 
Cross Section 

I Hence, 
3T T 3T 

4zah2 GJ 8aGah3 
zmax=- and Q = - = -  

where h,, is the maximum value of the hi. 
Cross-sectional properties for typical torsion members are given in the manual pub- 

lished by the American Institute of Steel Construction, Inc. (AISC, 1997). The formulas 
for narrow rectangular cross sections may also be used to approximate narrow curved 
members. See Example 6.6. 

Consider a torsion member of narrow semicircular cross section (Figure E6.6), with constant thickness 2h 
and mean radius a. The mean circumference is 2b = nu. We consider the member to be equivalent to a 
slender rectangular member of dimension 2 h x aa.  Then, for a twisting moment T applied to the member, 
by Eqs. 6.61, we approximate the maximum shear stress and angle of twist per unit length as follows: 

aa 3 
3 

2Th J = - ( 2 h )  Zmax = - 
J ’  

Alternatively, we may express 8 in terms of z,,, as 8 = zm,/2Gh. 

I FIGURE E6.6 
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6.6 TORSION OF RECTANGULAR CROSS SECTION 
MEMBERS 

In Section 6.5 the problem of a torsion bar with narrow rectangular cross section was 
approximated by noting the deflection of the corresponding membrane. In this section we 
again consider the rectangular section of width 2h and depth 2b, but we discard the restric- 
tion that h << b (Figure 6.15). 

By visualizing the membrane corresponding to the cross section in Figure 6.15, we 
note that the torsion stress function Cp must be even in both x and y.  Also, from Eqs. 6.38 
and 6.28, the torsion problem is defined by 

2 V q5 = -2GB over the cross section 
Cp = 0 aroundtheperimeter 

where v 2 = - + -  a2 a2 
ax2 ay2 

By Eq. 6.56, we see that GB(h2 - x 2 )  is a particular solution of the first of Eqs. (a). 
Accordingly, we take the stress function Cp in the form 

(b) 
2 2  Cp = GB(h - X  ) + V ( X , Y )  

where V(x, y )  is an even function of (x, y ) .  Substitution of Eq. (b) into Eqs. (a) yields 

2 V V = 0 over the cross section 

0 for x = f h  
v = {  GB(x  2 - h  2 ) fory = f b  

We seek solutions of Eqs. (c) by the method of separation of variables. Thus we take 

v = f ( x ) g ( y )  ( 4  

where f (x)  and g(y) are functions of x and y ,  respectively. The first of Eqs. (c) and (d) yield 

2 v v = g f " + g f Y  = 0 

where primes denote derivatives with respect to x or y .  For this equation to be satisfied, we 
must have 

FIGURE 6.15 Rectangular cross section. 
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L’ = -C = -A2 
f g  

where il is a positive constant. Hence, 

f ” + n 2 f  = o 
g ” - A  g = 0 2 

The solutions of these equations are 

f = AcosAx + B s i n k  
g = Ccoshily + Dsinhily 

Because V must be even in x and y, it follows that B = D = 0. Consequently, from Eq. 
(d) the function V takes the form 

V = Acosilxcoshily (e) 

where A denotes an arbitrary constant. 
To satisfy the second of Eqs. (c), Eq. (e) yields the result 

il = ?!! 
2h’ 

n = 1 ,3 ,5 ,  ... 

To satisfy the last of Eqs. (c) we employ the method of superposition and we write 

m 

V = 2 A,cosnzxcoshn- 
2h 2h 

n = 1, 3,5, ... 
(f) 

2 Equation ( f )  satisfies V V = 0 over the cross-sectional area. Equation (f) also automati- 
cally satisfies the boundary condition for x = +h. The boundary condition for y = +b yields 
the condition [see Eq. (c)] 

2h 
n = 1, 3, 5 ,  ... 

where 
n rb C, = Ancosh- 
2h 

By the theory of Fourier series, we multiply both sides of Eq. (g) by cos(nnx/2h) 
and integrate between the limits -h and +h to obtain the coefficients Cn as follows: 

C, = l h  -fF(x)cos-dx n nx 
h 2h 

-h 

Because F(x) cos(nnx/2h) = GO@ - h2) cos(nnx/2h) is symmetrical about x = 0, we may 
write 

C, = - x -h cosnZxdx ’ ‘) 2h 
h o  
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or 

x cos-dx-2G8h cn = 2 G 8 j  - 2 n z x  
2h 

0 h o  
Integration yields 

( n  - 1 ) / 2  -32G Oh2(-1 ) 
3 3  

cn = 
n z  

Hence, Eqs. (f), (h), and (i) yield 

and 

( - l ) ( n - l ) / 2  n z x  n z y  cos - cosh - 
2h 2h 

n cosh- 
2h 

3 n z b  (i) 
n = 1 ,  3 ,  5 ,  ... 

Note that since cosh x = 1 + 2/2!  + x4/4! + ..., the series in Eq. (j) goes to zero if b/h + 
00 (that is, if the section is very narrow). Then Eq. (j) reduces to 

Cp = G 8 (h2 - x’) 
This result verifies the assumption employed in Section 6.5 for the slender rectangular 
cross section. 

By Eqs. 6.23 and (j), we obtain 

( - l ) (n-  1112 n z x  
2h 2h 

2 n z b  n cosh- 
2h 

cos - sinh n7cy 
dCp - 16G8h 

2 OZX = ?i - -- a n = 1 ,  3 ,  5 ,  ... 
(k) ( n - 1 ) / 2  . n z x  sin - cosh n ! !  

2h 2h 
2 n z b  n cosh- 

2h 

(-1) 
= -3= 2G8x-- 16GOh 

2 
n = 1, 3 ,  5 ,  ... 

OZY dx 

By Eqs. 6.36 and (i), the twisting moment is 

b h  
T = 2 1  I@dxdy= C 8  = GJ8  

-b -h 

where GJ is the torsional rigidity and J is the torsional constant given by 

( - l ) ( n - 1 ) / 2  b h 1 (cos n$ cosh 3) dx dy 64h2 

J = 2 )  -b -h j (h2 -x2 )dxdy - -  3 n = 1 , 3 , 5 ,  2 ... n 3 c o s h k  n z b  -b-h 2h 
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a 

Integration yields 

x = h =  
z y y = o  

The factor outside the brackets on the right side of Eq. (m) is an approximation for a 

Commonly, Eq. (m) is written in the form 
thin rectangular cross section, because the series goes to zero as blh becomes large. 

n = 1, 3,5, ...n 

The torque-rotation equation [Eq. (l)] can then be written in the more compact form 

T = GOk1(2h)’(2b) ( 4  

Values of k ,  for several ratios of blh are given in Table 6.1. 
To determine the maximum shear stress in the rectangular torsion member, we con- 

sider the case b > h; see Figure 6.15. The maximum slope of the stress function, and by 
analogy the membrane, for the rectangular section occurs at x = fh, y = 0. At the two 
points for which x = f h ,  y = 0, the first of Eqs. (k) gives a,, = 0. Therefore, cry is the 
maximum shear stress at x = +h, y = 0. By the second of Eqs. (k), 

or 

where 

zmaX = 2GOhk 

TABLE 6.1 Torsional Parameters for Rectangular Cross Sections 

blh 1.0 1.5 2.0 2.5 3.0 4.0 6.0 10 m 

k, 0.141 0.196 0.229 0.249 0.263 0.281 0.299 0.312 0.333 
k2 0.208 0.231 0.246 0.256 0.267 0.282 0.299 0.312 0.333 
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Then by Eqs. (n) and (o), we may express z,, as 

EXAMPLE 6.7 
Torsional 

Constant for a 
Wide- Flange 

Section 

Solution 

where 

kl k ,  = - 
k 

Values of k2 for several ratios of blh are listed in Table 6.1. 

the following equations: 
A summary of the results for rectangular cross sectional torsion members is given by 

T = GJO 

J = k l ( 2 b ) ( 2 h ) 3  
(6.64) 

where values of k, and k2 are given in Table 6.1 for various values of blh. 

The nominal dimensions of a steel wide-flange section (W760 x 220) are shown in Figure E6.7. The beam 
is subjected to a twisting moment T = 5000 N m. 

(a) Detemine the maximum shear stress z,, and its location. Ignore the fillets and stress concentrations. 

(b) Determine the angle of twist per unit length for the applied twisting moment. 

FIGURE E6.7 

For the flanges b/h = 8.867 < 10. So, for a flange, k ,  = 0.308 by interpolation from Table 6.1. There- 
fore, for two flanges 

Jf = 2[k,(b,)(t,)3] = 4,424,100mm4 

For the web, b/h = 43.58 > 10. Therefore, for the web kl = 0.333 and 

4 J ,  = kl  d-2t t = 1,076,600mm ( f)( 
Hence, the torsional constant for the section is 

4 -6 4 J = Jf+J, = 5,500,700 mm = 5.501 x 10 m 
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EXAMPLE 6.8 
Rectangular 

Section Torsion 
Member 

Solution 

I (a) By Eq. 6.63, the maximum shear stress is 

and it is located along the vertical line of symmetry on the outer edge of the top and bottom flanges. 

(b) By the second of Eqs. 6.63 or the first of Eqs. 6.64, the angle of twist per unit length is 

= 0.00454 rad/m T 5000 

GJ (200 x 109)(5.501 x 

e = - =  = 0.00454 rad/m T 5000 

GJ (200 x 109)(5.501 x 

e = - =  

A rod with rectangular cross section is used to transmit torque to a machine frame (Figure E6.8). It has a 
width of 40 mm. The fist 3.0-m length of the rod has a depth of 60 mm, and the remaining 1.5-m length 
has a depth of 30 mm. The rod is made of steel for which G = 77.5 GPa. For T ,  = 750 N m and T2 = 
400 N m, determine the maximum shear stress in the rod. Determine the angle of twist of the free end. 

FIGURE E6.8 

For the left portion of the rod, 

From Table 6.1, we find k,  = 0.196 and k2 = 0.231. For the right portion of the rod, 

- 2o - 1.33 
h 15 

Linear interpolation between the values 1.0 and 1.5 in Table 6.1 gives k,  = 0.178 and k2 = 0.223. 

this portion of the rod is 
The torque in the left portion of the rod is T = T ,  + T2 = 1.15 kN m; the maximum shear stress in 

= 51.9 MPa - 
L a x  - 

k2(2b)(2hI2 

The torque in the right portion of the rod is T2 = 400 N m; the maximum shear stress in this portion 
of the rod is 

Hence, the maximum shear stress occurs in the left portion of the rod and is equal to 5 1.9 MPa. 

rod. Thus, 
The angle of twist p is equal to the sum of the angles of twist for the left and right portions of the 

TL 
GJ p = x- = 0.0994 rad 
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6.7 HOLLOW THIN-WALL TORSION MEMBERS 
AND MULTIPLY CONNECTED CROSS SECTIONS 

In general, the solution for a torsion member with a multiply connected cross section is 
more complex than that for the solid (simply connected cross section) torsion member. For 
simplicity, we refer to the torsion member with a multiply connected cross section as a 
hollow torsion member. The complexity of the solution can be illustrated for the hollow 
torsion member in Figure 6.16. No shear stresses act on the lateral surface of the hollow 
region of the torsion member; therefore, the stress function and the membrane must have 
zero slope over the hollow region (see Eqs. 6.23 and Section 6.4). Consequently, the asso- 
ciated elastic membrane may be given a zero slope over the hollow region by machining a 
flat plate to the dimensions of the hollow region and displacing the plate a distance zl, as 
shown in Figure 6.16. However, the distance z1 is not known. Furthermore, only one value 
of z1 is valid for specified values of p and 5’. 

The solution for torsion members having thin-wall noncircular sections is based on 
the following simplifying assumption. Consider the thin-wall torsion member in Figure 
6 . 1 7 ~ .  The plateau (region of zero slope) over the hollow area and the resulting membrane 
are shown in Figure 6.17b. If the wall thickness is small compared to the other dimensions 
of the cross section, sections through the membrane, made by planes parallel to the z axis 
and perpendicular to the outer boundary of the cross section, are approximately straight 
lines. It is assumed that these intersections are straight lines. Because the shear stress is 
given by the slope of the membrane, this simplifying assumption leads to the condition 
that the shear stress is constant through the thickness. However, the shear stress around the 
boundary is not constant, unless the thickness t is constant. This is apparent by Figure 
6.17b since z = &b/Jn, where n is normal to a membrane contour curve z = constant. 
Hence, by Eqs. 6.53 and Figure 6.17b, z = (2GBS/p)dz/dn = (2GBS/p) tan a. Finally, by 
Eq. 6.52, 

z = - tana 1 = -s ina 1 (since a is assumed to be small) (6.65) 
C C 

(b) Intersection of (x ,  z) plane with membrane 

FIGURE 6.16 Membrane for hollow torsion mem- 
ber. (a) Hollow section. (b)  Intersection of (x,  z) plane 
with membrane. 

FIGURE 6.17 
sion member. (a) Thin-wall hollow section. (b) Mem- 
brane. 

Membrane for thin-wall hollow tor- 



6.7 HOLLOW THIN-WALL TORSION MEMBERS AND MULTIPLY CONNECTED CROSS SECTIONS 229 

The quantity q = rt ,  with dimensions [F/L], is commonly referred to as shearflow. 
As indicated in Figure 6.17b, the shear flow is constant around the cross section of a thin- 
wall hollow torsion member and is equal to 4. Since q = zt is constant, the shear stress z 
varies with the thickness t ,  with the maximum shear stress occurring at minimum t. For a 
thin-wall hollow torsion member with perimeter segments l1, 12, . . ., of constant thickness 
tl, t2, . . ., the corresponding shear stresses are z1 = q/ t l ,  z2 = q/t2, . . . (assuming that stress 
concentrations between segments are negligible). 

Since 4 is proportional to z (Eq. 6.52), by Eq. 6.36, the torque is proportional to the 
volume under the membrane. Thus, we have approximately (zl = ~ 4 ~ )  

(6.66) 2Az, 
T = 2A4, = = 2Aq = 2Azt 

in which A is the area enclosed by the mean perimeter of the cross section (see the area 
enclosed by the dot-dashed line in Figure 6.17a). A relation between r ,  G, 8, and the 
dimensions of the cross section may be derived from the equilibrium conditions in the z 
direction. Thus, 

C F z  = pA-f Ssina  dl = 0 

and, by Eqs. 6.65 and 6.52, 

i f z d l = s  = 2G8 (6.67) 
A 

where 1 is the length of the mean perimeter of the cross section and S is the tensile force 
per unit length of the membrane. 

Equations 6.66 and 6.67 are based on the simplifying assumption that the wall thick- 
ness is sufficiently small so that the shear stress may be assumed to be constant through 
the wall thickness. For the cross section considered in Example 6.9, the resulting error is 
negligibly small when the wall thickness is less than one-tenth of the minimum cross- 
sectional dimension. 

With q = rt being constant, it is instructive to write Eq. 6.67 in the form 

8 =  - $ r d l  1 = - 
2GA 2GA 

where, in general, thickness t is a pointwise function of 1. For a cross section of constant 
thickness, f dl/t = l/t, where 1 is the circumferential length of the constant-thickness cross 
section. For a circumference with segments l1, 12, . . ., of constant thickness t l ,  t2, . . ., 

Then, Eq. (a) may be written as 

By Eqs. 6.66 and (a), we may eliminate q to obtain 

T = GJ8 
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where 

4A2 J = -  
f d l / t  

and GJ is the torsional stiffness of a general hollow cross section. 

stant thickness t l ,  t2, ..., Eq. 6.66 may be written as 
Also, since q is constant, for a hollow cross section with segments I,, I,, . . ., of con- 

T = 2Aq = 2 A ~ , t ,  = 2 A ~ , t ,  = ... 

where rlr z2, . . . are the shear stresses in the cross section segments I,, E,, . . . . 

through the thickness and around the perimeter. From Eq. 6.67, we have 
For a thin hollow tube with constant thickness, the shear stress z is constant both 

Noting that, from Q. 6.66, z= T/2At, we can write the load-rotation relation for the tube as 

TI @ = -  
4GtA2 

If Eq. (b) is written in the conventional form 8 = TIGJ, then we see that the torsion con- 
stant for the thin-wall tube with constant thickness is 

n 

If the thin-wall tube has a circular cross section, then A = nR2 and 1 = 2nR, where R 
is the mean radius of the tube. Hence, we see that an approximate expression for the tor- 
sion constant is given by 

3 J = 2nR t 

As the ratio tlR becomes smaller, the quality of the approximation improves. 

6.7.1 
Several Compartments 

Hollow Thin-Wall Torsion Member Having 

Thin-wall hollow torsion members may have two or more compartments. Consider the tor- 
sion member whose cross section is shown in Figure 6.18a. Section a-a through the mem- 
brane is shown in Figure 6.186. The plateau over each compartment is assumed to have a 
different elevation zi. If there are N compartments, there are N + 1 unknowns to be deter- 
mined. For a specified torque T, the unknowns are the N values for the shear flow qi and 
the unit angle of twist 6,  which is assumed to be the same for each compartment. By Eq. 
6.66 the N + 1 equations are given by 

N 
T = 2 x A i k i  

C i =  1 
(6.68) 

N 
= 2 Ai qi 

i =  1 
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(b) Section u-a through membrane 

FIGURE 6.18 Multicompartment hollow thin-wall torsion member. (a) Membrane. (b) Section 
a-a through membrane. 

and by N additional equations similar to Eq. 6.67 

(6.69) 

where A j  is the area bounded by the mean perimeter for the ith compartment, q’ is the shear 
flow for the compartment adjacent to the ith compartment where dl is located, t is the 
thickness where dl is located, and l j  is the length of the mean perimeter for the ith compart- 
ment. We note that 4’ is zero at the outer boundary. The maximum shear stress occurs 
where the membrane has the greatest slope, that is, where (qj - q’)/t takes on its maximum 
value for the N compartments. 

A hollow circular torsion member has an outside diameter of 22.0 mm and an inside diameter of 
18.0 mm, with mean diameter D = 20.0 mm and t/D = 0.10. 

(a) Let the shear stress at the mean diameter be z = 70.0 MPa. Determine T and 6 using Eqs. 6.66 and 
6.67 and compare these values with values obtained using the elasticity theory. G = 77.5 GPa. 

(b) Let a cut be made through the wall thickness along the entire length of the torsion member and let 
the maximum shear stress in the resulting torsion member be 70.0 MPa. Determine T and 6. 

(a) The area A enclosed by the mean perimeter is 

ZDL 2 A = - = l O O ~ m m  
4 

I The torque, given by Eq. 6.66, is 
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I T = 2 A ~ t  = 2( 100n)(70)(2) = 87,960 N . mm = 87.96k N . m 

I Because the wall thickness is constant, Eq. 6.67 gives 

~ Elasticity values of Tand 8 are given by Eqs. 6.15 and 6.12. Thus, with 
~ 

EXAMPLE 6.10 
TWO- 

Compartment 
Hollow Thin-Wa// 
Torsion Member 

4 
32 

A hollow thin-wall torsion member has two compartments with cross-sectional dimensions as indi- 
cated in Figure E6.10. The material is an aluminum alloy for which G = 26.0 GPa. Determine the 
torque and unit angle of twist if the maximum shear stress, at locations away from stress concentra- 
tions, iS 40.0 MPa. 

and 

70 = 0.0000903 rad/mm z (-)=-= 
Gr 77,500(10) 

The approximate solution agrees with the elasticity theory in the prediction of the unit angle of twist 
and yields torque that differs by only 1%. Note that the approximate solution assumes that the shear 
stress was uniformly distributed, whereas the elasticity solution indicates that the maximum shear 
stress is 10% greater than the value at the mean diameter, since the elasticity solution indicates that z 
is proportional to L Note that for a thin tube J a 2nR3t = 4000a mm4, where R is the mean radius and 
I is the wall thickness. 

(b) When a cut is made through the wall thickness along the entire length of the torsion member, the 
torsion member becomes equivalent to a long narrow rectangle, for which the theory of Section 6.5 
applies. Thus, with h = 1 and b = 10n 

Hence, after the cut, for the same shear stress the torque is 6.7% of the torque for part (a), whereas the 
unit angle of twist is 5 times greater than that for part (a). 


	Cover
	Title Page
	Copyright Page
	Preface
	Dedication Page
	CONTENTS
	1. Introduction
	1.1 Review of Elementary Mechanics of Materials
	1.1.1 Axially Loaded Members
	1.1.2 Torsionally Loaded Members
	1.1.3 Bending of Beams

	1.2 Methods of Analysis
	1.2.1 Method of Mechanics of Materials
	1.2.2 Method of Continuum Mechanics and the Theory of Elasticity
	1.2.3 Deflections by Energy Methods

	1.3 Stress-Strain Relations
	1.3.1 Elastic and Inelastic Response of a Solid
	1.3.2 Material Properties

	1.4 Failure and Limits on Design
	1.4.1 Modes of Failure

	Problems
	References

	2. Theories of Stress and Strain
	2.1 Definition of Stress at a Point
	2.2 Stress Notation
	2.3 Symmetry of the Stress Array and Stress on an Arbitrarily Oriented Plane
	2.3.1 Symmetry of Stress Components
	2.3.2 Stresses Acting on Arbitrary Planes
	2.3.3 Normal Stress and Shear Stress on an Oblique Plane

	2.4 Transformation of Stress, Principal Stresses, and other Properties
	2.4.1 Transformation of Stress
	2.4.2 Principal Stresses
	2.4.3 Principal Values and Directions
	2.4.4 Octahedral Stress
	2.4.5 Mean and Deviator Stresses
	2.4.6 Plane Stress
	2.4.7 Mohr's Circle in Two Dimensions
	2.4.8 Mohr's Circles in Three Dimensions

	2.5 Differential Equations of Motion of a Deformable Body
	2.5.1 Specialization of Equations 2.46

	2.6 Deformation of a Deformable Body
	2.7 Strain Theory, Transformation of Strain, and Principal Strains
	2.7.1 Strain of a Line Element
	2.7.2 Final Direction of a Line Element
	2.7.3 Rotation between Two Line Elements (Definition of Shear Strain)
	2.7.4 Principal Strains

	2.8 Small-Displacement Theory
	2.8.1 Strain Compatibility Relations
	2.8.2 Strain-Displacement Relations for Orthogonal Curvilinear Coordinates

	2.9 Strain Measurement and Strain Rosettes
	Problems
	References

	3. Linear Stress-Strain-Temperature Relations
	3.1 First Law of Thermodynamics, Internal-Energy Density, and Complementary Internal-Energy Density
	3.1.1 Elasticity and Internal-Energy Density
	3.1.2 Elasticity and Complementary Internal-Energy Density

	3.2 Hooke's Law Anisotropic Elasticity
	3.3 Hooke's Law Isotropic Elasticity
	3.3.1 Isotropic and Homogeneous Materials
	3.3.2 Strain-Energy Density of Isotropic Elastic Materials

	3.4 Equations of Thermoelasticity for Isotropic Materials
	3.5 Hooke's Law Orthotropic Materials
	Problems
	References

	4. Inelastic Material, Behavior
	4.1 Limitations on the Use of Uniaxial Stress-Strain Data
	4.1.1 Rate of Loading
	4.1.2 Temperature Lower Than Room Temperature
	4.1.3 Temperature Higher Than Room Temperature
	4.1.4 Unloading and Load Reversal
	4.1.5 Multiaxial States of Stress

	4.2 Nonlinear Material Response
	4.2.1 Models of Uniaxial Stress-Strain Curves

	4.3 Yield Criteria: General Concepts
	4.3.1 Maximum Principal Stress Criterion
	4.3.2 Maximum Principal Strain Criterion
	4.3.3 Strain-Energy Density Criterion

	4.4 Yielding of Ductile Metals
	4.4.1 Maximum Shear-Stress (Tresca) Criterion
	4.4.2 Distortional Energy Density (von Mises) Criterion
	4.4.3 Effect of Hydrostatic Stress and the pi-Plane

	4.5 Alternative Yield Criteria
	4.5.1 Mohr-Coulomb Yield Criterion
	4.5.2 Drucker-Prager Yield Criterion
	4.5.3 Hill's Criterion for Orthotropic Materials

	4.6 General Yielding
	4.6.1 Elastic-Plastic Bending
	4.6.2 Fully Plastic Moment
	4.6.3 Shear Effect on Inelastic Bending
	4.6.4 Modulus of Rupture
	4.6.5 Comparison of Failure Criteria
	4.6.6 Interpretation of Failure Criteria for General Yielding

	Problems
	References

	5. Applications of Energy Methods
	5.1 Principle of Stationary Potential Energy
	5.2 Castigliano's Theorem on Deflections
	5.3 Castigliano's Theorem on Deflections for Linear Load-Deflection Relations
	5.3.1 Strain Energy U_N for Axial Loading
	5.3.2 Strain Energies U_M and U_S for Beams
	5.3.3 Strain Energy U_T for Torsion

	5.4 Deflections of Statically Determinate Structures
	5.4.1 Curved Beams Treated as Straight Beams
	5.4.2 Dummy Load Method and Dummy Unit Load Method

	5.5 Statically Indeterminate Structures
	5.5.1 Deflections of Statically Indeterminate Structures

	Problems
	References

	6. Torsion
	6.1 Torsion of a Prismatic Bar of Circular Cross Section
	6.1.1 Design of Transmission Shafts

	6.2 Saint-Venant's Semiinverse Method
	6.2.1 Geometry of Deformation
	6.2.2 Stresses at a Point and Equations of Equilibrium
	6.2.3 Boundary Conditions

	6.3 Linear Elastic Solution
	6.3.1 Elliptical Cross Section
	6.3.2 Equilateral Triangle Cross Section
	6.3.3 Other Cross Sections

	6.4 The Prandtl Elastic-Membrane (Soap-Film) Analogy
	6.4.1 Remark on Reentrant Corners

	6.5 Narrow Rectangular Cross Section
	6.5.1 Cross Sections Made Up of Long Narrow Rectangles

	6.6 Torsion of Rectangular Cross Section Members
	6.7 Hollow Thin-Wall Torsion Members and Multiply Connected Cross Sections
	6.7.1 Hollow Thin-Wall Torsion Member Having Several Compartments

	6.8 Thin-Wall Torsion Members with Restrained Ends
	6.8.1 I-Section Torsion Member Having One End Restrained from Warping
	6.8.2 Various Loads and Supports for Beams in Torsion

	6.9 Numerical Solution of the Torsion Problem
	6.10 Inelastic Torsion: Circular Cross Sections
	6.10.1 Modulus of Rupture in Torsion
	6.10.2 Elastic-Plastic and Fully Plastic Torsion
	6.10.3 Residual Shear Stress

	6.11 Fully Plastic Torsion: General Cross Sections
	Problems
	References

	7. Bending of Straight Beams
	7.1 Fundamentals of Beam Bending
	7.1.1 Centroidal Coordinate Axes
	7.1.2 Shear Loading of a Beam and Shear Center Defined
	7.1.3 Symmetrical Bending
	7.1.4 Nonsymmetrical Bending
	7.1.5 Plane of Loads: Symmetrical and Nonsymmetrical Loading

	7.2 Bending Stresses in Beams Subjected to Nonsymmetrical Bending
	7.2.1 Equations of Equilibrium
	7.2.2 Geometry of Deformation
	7.2.3 Stress-Strain Relations
	7.2.4 Load-Stress Relation for Nonsymmetrical Bending
	7.2.5 Neutral Axis
	7.2.6 More Convenient Form for the Flexure Stress sigma_zz

	7.3 Deflections of Straight Beams Subjected to Nonsymmetrical Bending
	7.4 Effect of Inclined Loads
	7.5 Fully Plastic Load for Nonsymmetrical Bending
	Problems
	Reference

	8. Shear Center for Thin-Wall Beam Cross Sections
	8.1 Approximations for Shear in Thin-Wall Beam Cross Sections
	8.2 Shear Flow in Thin-Wall Beam Cross Sections
	8.3 Shear Center for a Channel Section
	8.4 Shear Center of Composite Beams Formed from Stringers and Thin Webs
	8.5 Shear Center of Box Beams
	Problems
	Reference

	9. Curved Beams
	9.1 Introduction
	9.2 Circumferential Stresses in a Curved Beam
	9.2.1 Location of Neutral Axis of Cross Section

	9.3 Radial Stresses in Curved Beams
	9.3.1 Curved Beams Made from Anisotropic Materials

	9.4 Correction of Circumferential Stresses in Curved Beams Having I, T, or Similar Cross Sections
	9.4.1 Bleich's Correction Factors

	9.5 Deflections of Curved Beams
	9.5.1 Cross Sections in the Form of an I, T, etc.

	9.6 Statically Indeterminate Curved Beams: Closed Ring Subjected to a Concentrated Load
	9.7 Fully Plastic Loads for Curved Beams
	9.7.1 Fully Plastic versus Maximum Elastic Loads for Curved Beams

	Problems
	References

	10. Beams on Elastic Foundations
	10.1 General Theory
	10.2 Infinite Beam Subjected to a Concentrated Load: Boundary Conditions
	10.2.1 Method of Superposition
	10.2.2 Beam Supported on Equally Spaced Discrete Elastic Supports

	10.3 Infinite Beam Subjected to a Distributed Load Segment
	10.3.1 Uniformly Distributed Load
	10.3.2 beta L' Less-Than or Equal to pi
	10.3.3 beta L' Rightwards Arrow Infinity
	10.3.4 Intermediate Values of beta L'
	10.3.5 Triangular Load

	10.4 Semiinfinite Bean Subjected to Loads at its End
	10.5 Semiinfinite Beam with Concentrated Load near its End
	10.6 Short Beams
	10.7 Thin-Wall Circular Cylinders
	Problems
	References

	11. The Thick- Wall Cylinder
	11.1 Basic Relations
	11.1.1 Equation of Equilibrium
	11.1.2 Strain-Displacement Relations and Compatibility Condition
	11.1.3 Stress-Strain-Temperature Relations
	11.1.4 Material Response Data

	11.2 Stress Components at Sections Far from Ends for a Cylinder with Closed Ends
	11.2.1 Open Cylinder

	11.3 Stress Components and Radial Displacement for Constant Temperature
	11.3.1 Stress Components
	11.3.2 Radial Displacement for a Closed Cylinder
	11.3.3 Radial Displacement for an Open Cylinder

	11.4 Criteria of Failure
	11.4.1 Failure of Brittle Materials
	11.4.2 Failure of Ductile Materials
	11.4.3 Material Response Data for Design
	11.4.4 Ideal Residual Stress Distributions for Composite Open Cylinders

	11.5 Fully Plastic Pressure and Autofrettage
	11.6 Cylinder Solution for Temperature Change Only
	11.6.1 Steady-State Temperature Change (Distribution)
	11.6.2 Stress Components

	11.7 Rotating Disks of Constant Thickness
	Problems
	References

	12. Elastic and Inelastic Stability of Columns
	12.1 Introduction to the Concept of Column Buckling
	12.2 Deflection Response of Columns to Compressive Loads
	12.2.1 Elastic Buckling of an Ideal Slender Column
	12.2.2 Imperfect Slender Columns

	12.3 The Euler Formula for Columns with Pinned Ends
	12.3.1 The Equilibrium Method
	12.3.2 Higher Buckling Loads; n > 1
	12.3.3 The Imperfection Method
	12.3.4 The Energy Method

	12.4 Euler Buckling of Columns with Linearly Elastic End Constraints
	12.5 Local Buckling of Columns
	12.6 Inelastic Buckling of Columns
	12.6.1 Inelastic Buckling
	12.6.2 Two Formulas for Inelastic Buckling of an Ideal Column
	12.6.3 Tangent-Modulus Formula for an Inelastic Buckling Load
	12.6.4 Direct Tangent-Modulus Method

	Problems
	References

	13. Flat Plates
	13.1 Introduction
	13.2 Stress Resultants in a Flat Plate
	13.3 Kinematics: Strain-Displacement Relations for Plates
	13.3.1 Rotation of a Plate Surface Element

	13.4 Equilibrium Equations for Small-Displacement Theory of Flat Plates
	13.5 Stress-Strain-Temperature Relations for Isotropic Elastic Plates
	13.5.1 Stress Components in Terms of Tractions and Moments
	13.5.2 Pure Bending of Plates

	13.6 Strain Energy of a Plate
	13.7 Boundary Conditions for Plates
	13.8 Solution of Rectangular Plate Problems
	13.8.1 Solution of nabla^2 nabla^2 w = p/D for a Rectangular Plate
	13.8.2 Westergaard Approximate Solution for Rectangular Plates: Uniform Load
	13.8.3 Deflection of a Rectangular Plate: Uniformly Distributed Load

	13.9 Solution of Circular Plate Problems
	13.9.1 Solution of nabla^2 nabla^2 w = p/D for a Circular Plate
	13.9.2 Circular Plates with Simply Supported Edges
	13.9.3 Circular Plates with Fixed Edges
	13.9.4 Circular Plate with a Circular Hole at the Center
	13.9.5 Summary for Circular Plates with Simply Supported Edges
	13.9.6 Summary for Circular Plates with Fixed Edges
	13.9.7 Summary for Stresses and Deflections in Flat Circular Plates with Central Holes
	13.9.8 Summary for Large Elastic Deflections of Circular Plates: Clamped Edge and Uniformly Distributed Load
	13.9.9 Significant Stress When Edges are Clamped
	13.9.10 Load on a Plate When Edges are Clamped
	13.9.11 Summary for Large Elastic Deflections of Circular Plates: Simply Supported Edge and Uniformly Distributed Load
	13.9.12 Rectangular or other Shaped Plates with Large Deflections

	Problems
	References

	14. Stress Concentrations
	14.1 Nature of a Stress Concentration Problem and the Stress Concentration Factor
	14.2 Stress Concentration Factors: Theory of Elasticity
	14.2.1 Circular Hole in an Infinite Plate under Uniaxial Tension
	14.2.2 Elliptic Hole in an Infinite Plate Stressed in a Direction Perpendicular to the Major Axis of the Hole
	14.2.3 Elliptical Hole in an Infinite Plate Stressed in the Direction Perpendicular to the Minor Axis of the Hole
	14.2.4 Crack in a Plate
	14.2.5 Ellipsoidal Cavity
	14.2.6 Grooves and Holes

	14.3 Stress Concentration Factors: Combined Loads
	14.3.1 Infinite Plate with a Circular Hole
	14.3.2 Elliptical Hole in an Infinite Plate Uniformly Stressed in Directions of Major and Minor Axes of the Hole
	14.3.3 Pure Shear Parallel to Major and Minor Axes of the Elliptical Hole
	14.3.4 Elliptical Hole in an Infinite Plate with Different Loads in Two Perpendicular Directions
	14.3.5 Stress Concentration at a Groove in a Circular Shaft

	14.4 Stress Concentration Factors: Experimental Techniques
	14.4.1 Photoelastic Method
	14.4.2 Strain-Gage Method
	14.4.3 Elastic Torsional Stress Concentration at a Fillet in a Shaft
	14.4.4 Elastic Membrane Method: Torsional Stress Concentration
	14.4.5 Beams with Rectangular Cross Sections

	14.5 Effective Stress Concentration Factors
	14.5.1 Definition of Effective Stress Concentration Factor
	14.5.2 Static Loads
	14.5.3 Repeated Loads
	14.5.4 Residual Stresses
	14.5.5 Very Abrupt Changes in Section: Stress Gradient
	14.5.6 Significance of Stress Gradient
	14.5.7 Impact or Energy Loading

	14.6 Effective Stress Concentration Factors: Inelastic Strains
	14.6.1 Neuber's Theorem

	Problems
	References

	15. Fracture Mechanics
	15.1 Failure Criteria and Fracture
	15.1.1 Brittle Fracture of Members Free of Cracks and Flaws
	15.1.2 Brittle Fracture of Cracked or Flawed Members

	15.2 The Stationary Crack
	15.2.1 Blunt Crack
	15.2.2 Sharp Crack

	15.3 Crack Propagation and the Stress Intensity Factor
	15.3.1 Elastic Stress at the Tip of a Sharp Crack
	15.3.2 Stress Intensity Factor: Definition and Derivation
	15.3.3 Derivation of Crack Extension Force G
	15.3.4 Critical Value of Crack Extension Force

	15.4 Fracture: Other Factors
	15.4.1 Elastic-Plastic Fracture Mechanics
	15.4.2 Crack-Growth Analysis
	15.4.3 Load Spectra and Stress History
	15.4.4 Testing and Experimental Data Interpretation

	Problems
	References

	16. Fatigue: Progressive Fracture
	16.1 Fracture Resulting from Cyclic Loading
	16.1.1 Stress Concentrations

	16.2 Effective Stress Concentration Factors: Repeated Loads
	16.3 Effective Stress Concentration Factors: Other Influences
	16.3.1 Corrosion Fatigue
	16.3.2 Effect of Range of Stress
	16.3.3 Methods of Reducing Harmful Effects of Stress Concentrations

	16.4 Low Cycle Fatigue and the epsilon-N Relation
	16.4.1 Hysteresis Loop
	16.4.2 Fatigue-Life Curve and the epsilon-N Relation

	Problems
	References

	17. Contact Stresses
	17.1 Introduction
	17.2 The Problem of Determining Contact Stresses
	17.3 Geometry of the Contact Surface
	17.3.1 Fundamental Assumptions
	17.3.2 Contact Surface Shape after Loading
	17.3.3 Justification of Eq. 17.1
	17.3.4 Brief Discussion of the Solution

	17.4 Notation and Meaning of Terms
	17.5 Expressions for Principal Stresses
	17.6 Method of Computing Contact Stresses
	17.6.1 Principal Stresses
	17.6.2 Maximum Shear Stress
	17.6.3 Maximum Octahedral Shear Stress
	17.6.4 Maximum Orthogonal Shear Stress
	17.6.5 Curves for Computing Stresses for Any Value of B/A

	17.7 Deflection of Bodies in Point Contact
	17.7.1 Significance of Stresses

	17.8 Stress for Two Bodies in Line Contact: Loads Normal to Contact Area
	17.8.1 Maximum Principal Stresses: k = 0
	17.8.2 Maximum Shear Stress: k = 0
	17.8.3 Maximum Octahedral Shear Stress: k = 0

	17.9 Stresses for Two Bodies in Line Contact: Loads Normal and Tangent to Contact Area
	17.9.1 Roller on Plane
	17.9.2 Principal Stresses
	17.9.3 Maximum Shear Stress
	17.9.4 Maximum Octahedral Shear Stress
	17.9.5 Effect of Magnitude of Friction Coefficient
	17.9.6 Range of Shear Stress for One Load Cycle

	Problems
	References

	18. Creep: Time-Dependent Deformation
	18.1 Definition of Creep and the Creep Curve
	18.2 The Tension Creep Test for Metals
	18.3 One-Dimensional Creep Formulas for Metals Subjected to Constant Stress and Elevated Temperature
	18.4 One-Dimensional Creep of Metals Subjected to Variable Stress and Temperature
	18.4.1 Preliminary Concepts
	18.4.2 Similarity of Creep Curves
	18.4.3 Temperature Dependency
	18.4.4 Variable Stress and Temperature

	18.5 Creep under Multiaxial States of Stress
	18.5.1 General Discussion

	18.6 Flow Rule for Creep of Metals Subjected to Multiaxial States of Stress
	18.6.1 Steady-State Creep
	18.6.2 Nonsteady Creep

	18.7 An Application of Creep of Metals
	Summary

	18.8 Creep of Nonmetals
	18.8.1 Asphalt
	18.8.2 Concrete
	18.8.3 Wood

	References

	19 - The Finite Element Method
	19.1 - Introduction
	19.2 - Formulation for Plane Elasticity
	19.3 - The Bilinear Rectangle
	19.4 - The Linear Isoparametric Quadrilateral
	19.5 - The Plane Frame Element
	19.6 - Closing Remarks
	Problems
	References

	Appendices
	Appendix A: Average Mechanical Properties of Selected Materials
	Appendix B: Second Moment (Moment of Inertia) of a Plane Area
	B.1 Moments of Inertia of a Plane Area
	B.2 Parallel Axis Theorem
	B.3 Transformation Equations for Moments and Products of Inertia
	B.3.1 Principal Axes of Inertia

	Problems

	Appendix C: Properties of Steel Cross Sections

	Author Index
	Subject Index

